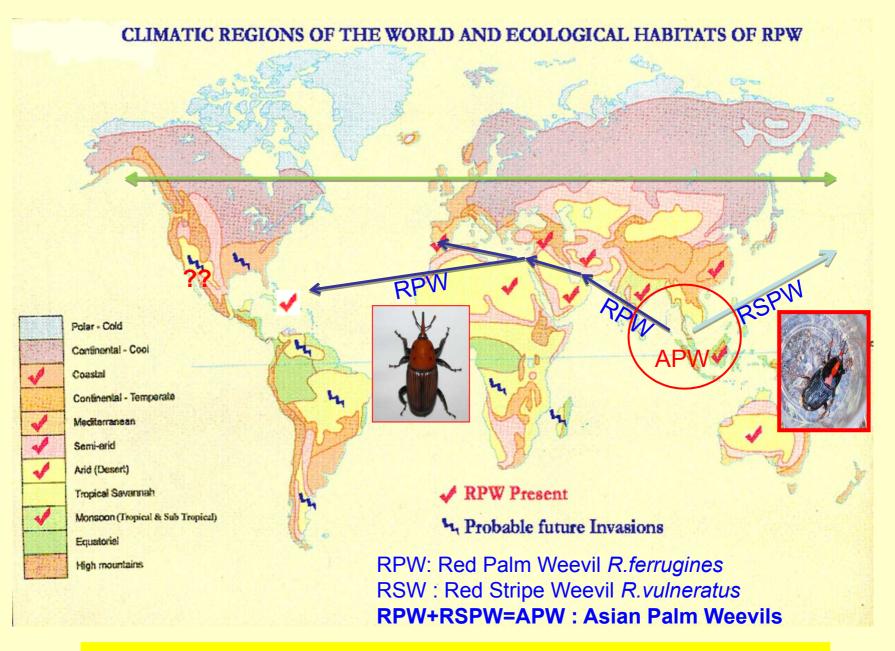




# The Current Global Situation and Challenges of Red Palm Weevil Management Programs

Jose Romeno Faleiro

Goa, India


jrfaleiro@yahoo.co.in

Scientific Consultation and High-Level Meeting on Red Palm Weevil Management Rome, Italy, 29-31 March, 2017

- ✓ Global spread of RPW
- ✓ Host range, biology, ecology, symptoms and damage
- ✓ Socio-economic and environmental impact
- ✓ Current management practices
- ✓ Challenges and current gaps
- ✓ Lessons learned

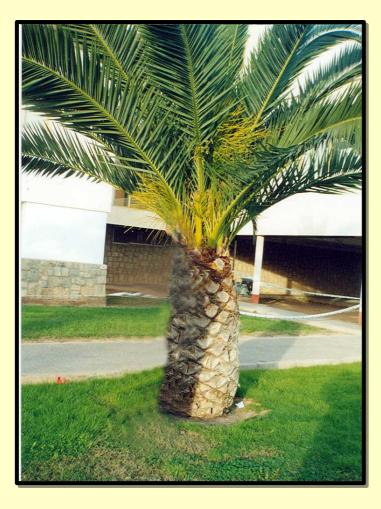
# **Rhynchophorus** Distribution

There are ~10 species in Rhynchophorus R. ferrugineus expansion since 1966 eus **Invaded** Range of R.ferrugineus marum ilineatus oenicis 0 2 ď.



The California Report of 2010 is RSPW (*R. vulneratus*) and not RPW

# **Geographical distribution of**


| Asia R    |                          |                            | <b>PW</b> Africa   | Europe            | Americas                            |
|-----------|--------------------------|----------------------------|--------------------|-------------------|-------------------------------------|
| India*    | Thailand                 | UAE (1985)                 | Egypt**<br>(1992)  | Spain**<br>(1995) | Curacao Islands<br>(Caribbean-2009) |
| Pakistan* | Cambodia                 | Qatar                      | Morocco**          | Turkey**          | USA, 2010 ???                       |
| Sri Lanka | Vietnam                  | Saudi Arabia               | Libya**<br>(2009)  | Italy**           |                                     |
| Myanmar   | China*                   | Kuwait                     | Tunisia 2011       | Greece**          |                                     |
|           | Taiwan                   | Oman                       | Mauritania<br>2015 | France**          |                                     |
|           | Philippines              | Bahrain                    |                    | Portugal**        |                                     |
|           | Malaysia                 | Israel                     |                    | Cyprus**          |                                     |
|           | Indonesia                | Palestine                  |                    | Malta**           |                                     |
|           | Timor                    | Jordan                     |                    | Georgia(2009)     |                                     |
|           | Papua New<br>Guinea      | Iran                       |                    | Croatia (2011)    |                                     |
|           | Solomon<br>Is./Australia | Iraq ? (1918)<br>Iraq 2015 |                    |                   |                                     |
|           |                          | Lebanon (2010)             |                    |                   |                                     |
|           |                          | Yemen 2013                 |                    |                   |                                     |

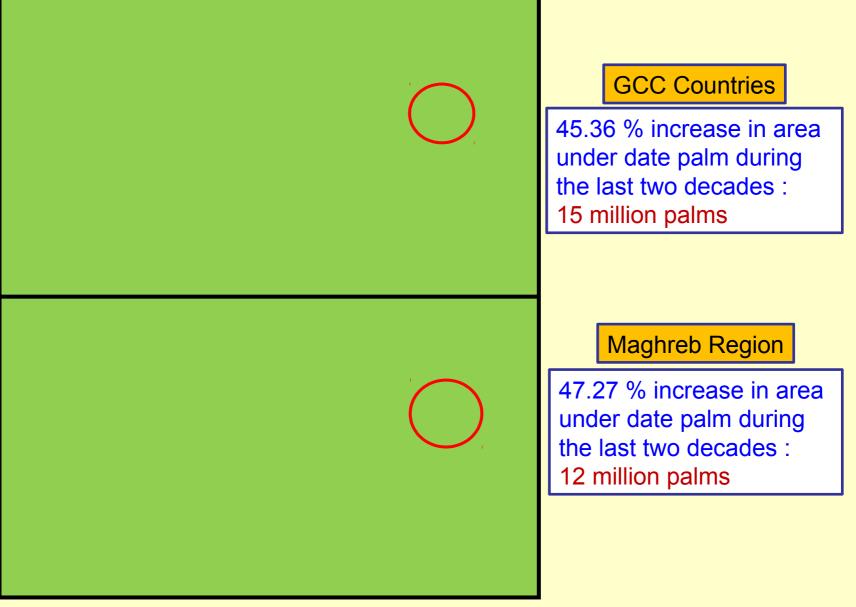
\* Grow coconut & date palm \*\* *P. canariensis* 

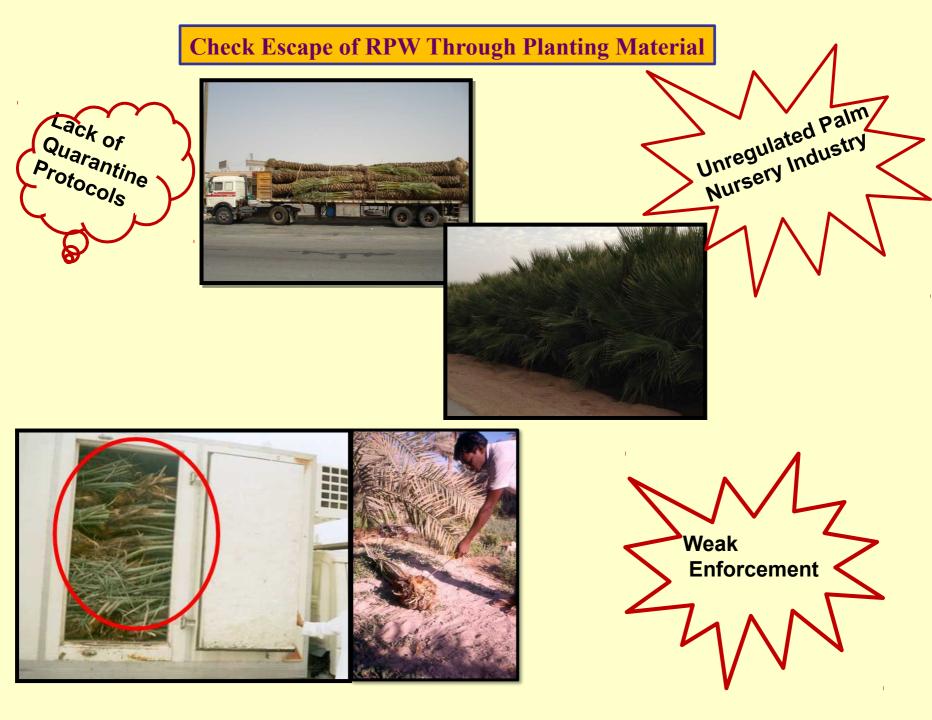
# Host range of *R. ferrugineus* (1956 to 2013) : 4 to 40 palm species

| Sr.<br>No. | Host Palm Species                                                                                                                                                                                                                                                                                                                                                                                               | Reference                                     |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 1          | Cocos nucifera, Phoenix dactylifera, Metroxylon sagu and Corypha umberaculifera                                                                                                                                                                                                                                                                                                                                 | Nirula, 1956                                  |
| 2          | <i>Cocos nucifera</i> , <i>Areca catechu</i> , <i>Arenga pinnata</i> , <i>Caryota</i> sp. <i>Coelococcus</i> sp., <i>Corypha</i> sp., <i>Elaeis guineensis</i> , <i>Livistona</i> sp., <i>Metroxylon sagu</i> , <i>Nypa</i> sp., <i>Oncosperma</i> sp. and <i>Phoenix</i> sp.                                                                                                                                   | Lever, 1969                                   |
| 3          | Areca catechu, Arenga pinnata, Borassus flabellifer, Caryota<br>maxima, Caryota cumingii, Cocos nucifera, Corypha<br>gebanga, Corypha umberaculifera, Corypha elata, Elaeis<br>guineensis, Metroxylon sagu, Oreodoxa regia, Phoenix<br>canariensis, Phoenix dactylifera, Phoenix sylvestris, Sabal<br>umbraculifera, and Washingtonia sp. Chamaerops humilis and<br>Howea forsteriana (syn. Kentia forsteriana) | Duran <i>et al.</i> ,<br>1998<br>(OJEU, 2008; |
| 4.         | 40 palm species world wide (Report from Portugal)<br>http://www.savealgarvepalms.com/en/weevil-facts/host-p<br>alm-trees                                                                                                                                                                                                                                                                                        | Anonymous,<br>2013                            |

# Most Preferred Hosts –*Phoenix canariensis*, *P.dactylifera* and *Cocus nucifera*






#### Large Stretches of Monocultures of Young Palms



#### Increase in Area under Date Palm [1992-2012]





EU Rules to Regulate the Palm Trade : Official Inspections of Immobilized Areas (2007/365/CE)

- -Delimitation of survey and demarcated areas
- -Three monthly official inspections
- Annual crop declaration
- -Application of phytosanitary treatments
- -Registration of planting material movement
- -Use of plant passport to monitor trade of palms

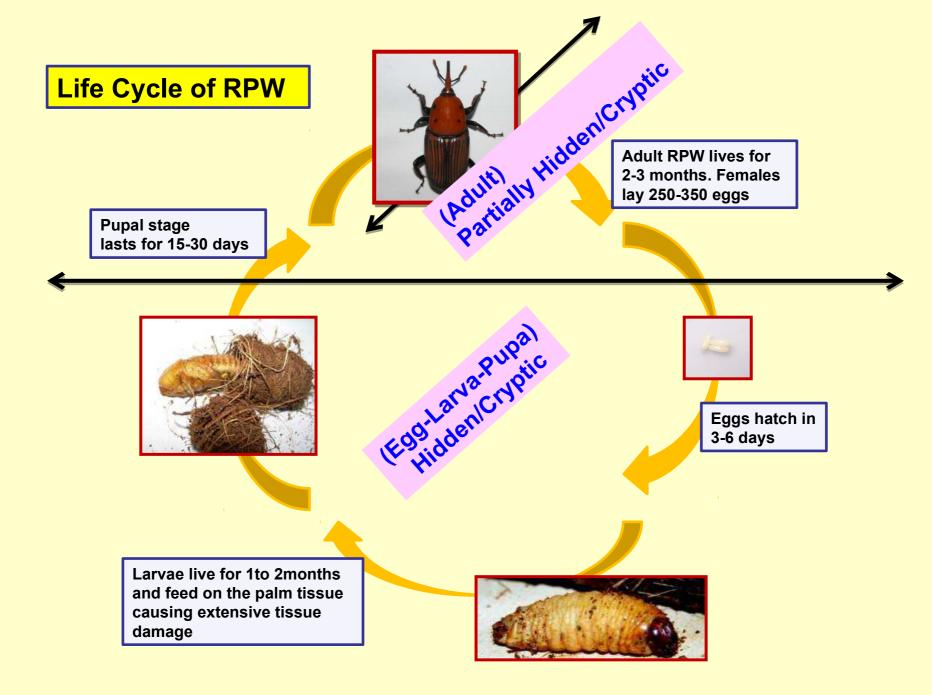
# Socio-economic and Environmental Impact

- RPW has a significant socio-economic impact on the date palm production sector and livelihoods of farmers in affected areas
- Impacts food security and rural community livelihood in date palm oases
- Poses a threat to Heritage/Historic Palms and Plantations of the World (Siwa-Egypt, Al-Ahsa-Saudi Arabia, Elche-Spain, Tangier-Morocco)

#### **Direct losses :**

- ✓ Value of the destroyed palms and the loss in yield
- ✓ High cost of management programs
- Expenses incurred on the removal and disposal of infested palms

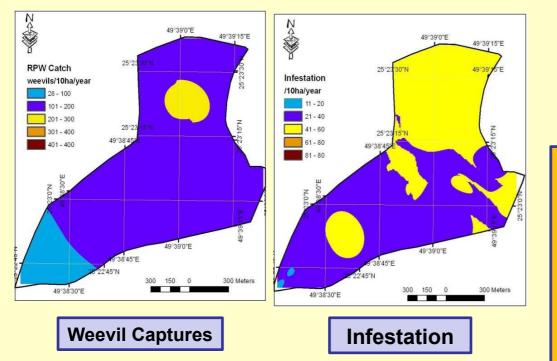
#### Indirect costs are also substantial :


- Restricted movement of trees, especially their offshoots, resulting in drastic cuts in trade
- Curtails expansion of new plantations
- Adverse impact on the environment and landscape as result of chemical treatments and removal of the infested palms, respectively
- Removal of severely infested palms in the GCC countries has been estimated to range from 1.74 to 8.69 million USD at 1 and 5% infestation, respectively
- In Valencia, Spain between 2004 and 2009, around 20,000 palms, mostly *P. canariensis*, were killed by RPW, where losses were estimated to be 16 million Euro.

#### Extensive Damage to the Urban Landscape



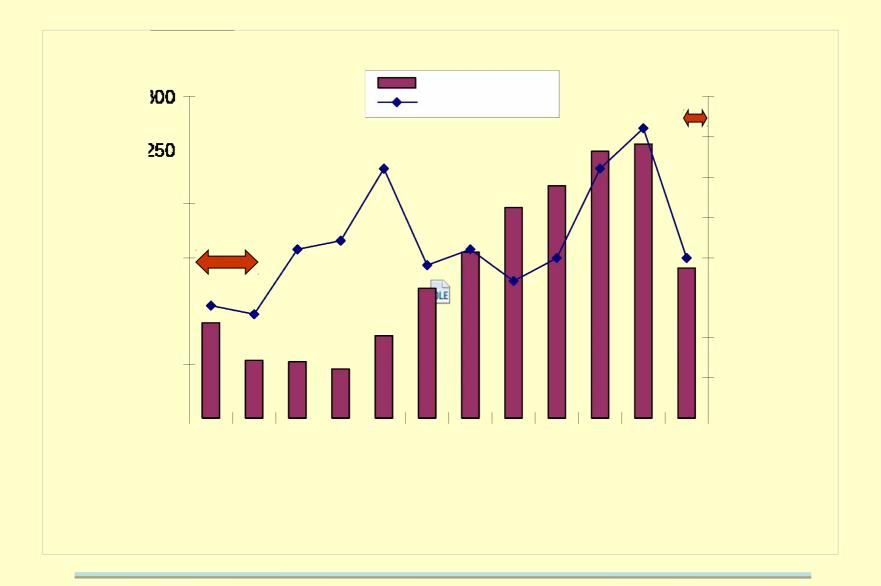
Source: Agrinvest SRL, Italy


# Behavior & Bio-ecology of RPW **Behavior of RPW : Not Well** Understood Why is This Weevil Here? -On Freshly Ploughed Barren Land



# **Temperature Thresholds for RPW**

| Character               | Number in days                          | Lower Temperature Thresholds                                                                               |
|-------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------|
| No. of eggs/ female     | 58-531<br>Concealed                     | Oviposition : 15.45 ° C<br>Hatching : 13.95 ° C (Dembilio et al., 2012)                                    |
| Incubation period       | 1-6                                     | < 1 generation a year in areas with mean annual temperature below 15° C.                                   |
| Larva: Larval<br>period | 25 – 105<br>(3-17 instars)<br>Concealed | <ul> <li>&gt;2 generations where mean annual temperature is above 19° C (Dembilio et al., 2010)</li> </ul> |
| Pupal period            | 11-45<br>Concealed                      | Minimum lethal temperature                                                                                 |
| Adult                   | 50-90<br>Concealed/Exposed              | 10 ° C for eggs<br>15 ° C for larvae                                                                       |
| Egg-Adult               | 45-139                                  | 0 ° C for pupae<br>(Martin and Cabello, 2005, Cabello, 2006)                                               |


#### GIS Based Spatial Spread of RPW [Al-Soodha (126ha) KSA- 2008]



Implications:

1.Infestations in clusters

2.Field trials(Trapping trials): Prone to error due to 'spot effect'



Anonymous, 1998. Final report of the Indian Technical Team (Part A), - Red palm weevil control project, Ministry of Agriculture and Water, Kingdom of Saudi Arabia, 65pp.

# **Damage-Detection-IPM**

# Symptoms of Damage Due to RPW





# **Detecting RPW Infested Palms**

# Current Practice

Visual

• Pest Collection (Trapping)

# **Experimental**

- Detecting Chemical Signatures
- Acoustic Detection
- Infrared Cameras
- Thermal imaging



# **Detecting RPW Infested Palms**



#### Sound Detection Devices



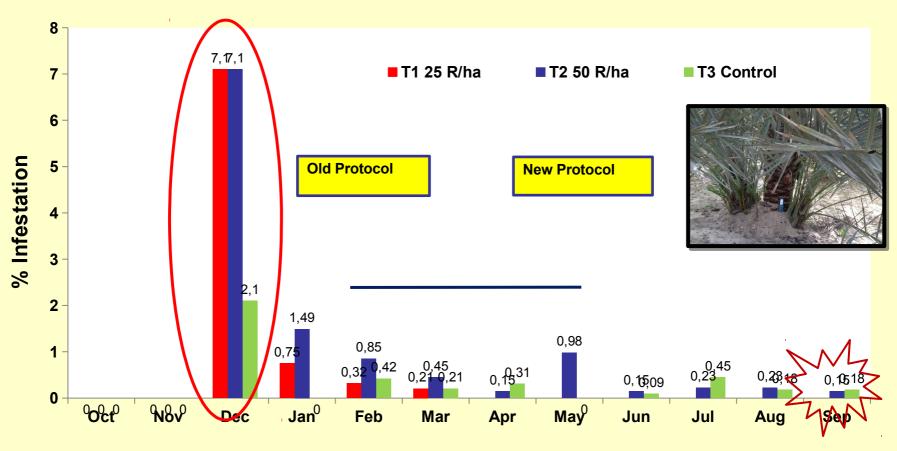





Sensor Based Detection

#### Visual Inspection of Palms to Detect RPW Infestation










Photos by : Moisés Fajardo Bello Coordinador GMR Canarias

# Impact of Periodic Visual Inspection of Palms [30 ha Date Plantation]



Months (Oct, 2013 - Sep, 2014)

Regular Visual Inspections : Key to the Control of RPW

#### Predisposing Factors for RPW Attack

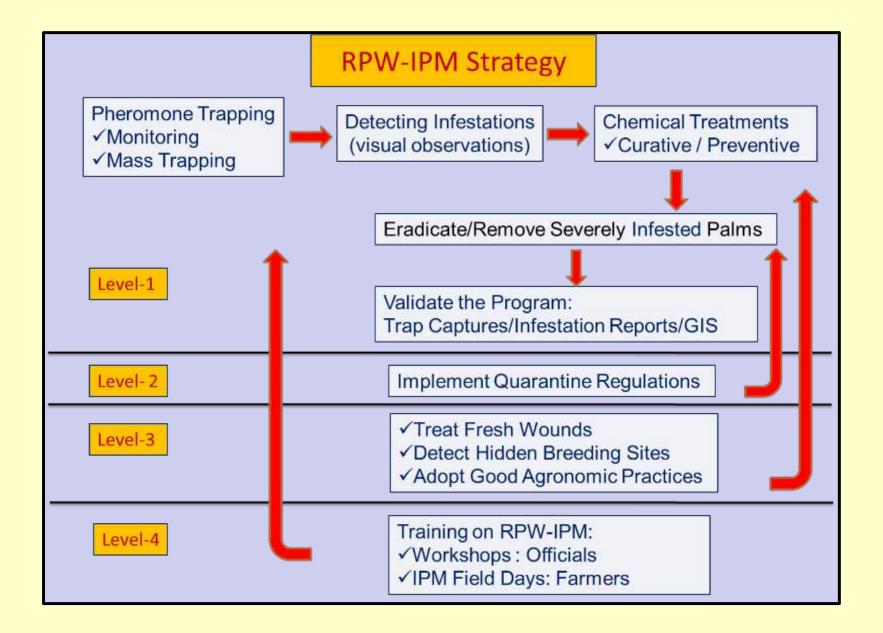


**Neglected Gardens** 

- - Wounds on the Palm - - -



**Breeding site – Cut Palm** 



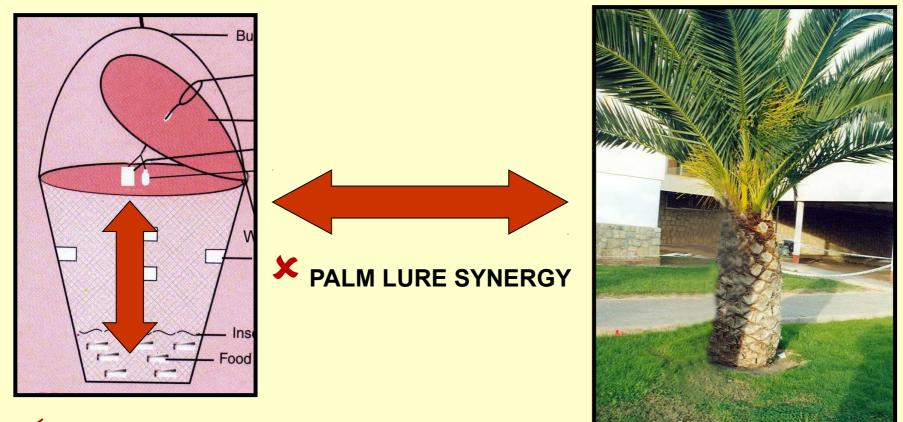

**Closed Garden** 



**In-groove Humidity\*** 

Abraham et al., 1998 ; Aldryhim et al., 2003\*




# Semiochemicals

Semiochemicals are well-known management tools especially for cryptic species (Soroker et al., 2015)

- **RPW Pheromone**: 4S, 5S nonanol & 4S, 5S nonanone
- Host Attractants : ethyl acetate , ethyl alcohol, ethyl propionate, pentan-1-ol , 2-methoxy-4-vinylphenol & gamma-nonanoic lactone
- **RPW Repellents** : methyl salicilate , α-pinene, 1-octen-3-ol & geraniol

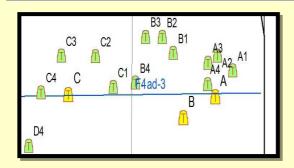
(Soroker et al., 2015)

#### Adopt the Best Protocols to Enhance Trapping Efficiency





#### Pheromone Trapping : Overview


#### Trap Design and Lures



#### Food Baits and Kairomones



#### Trap Density and Smart Traps









- Develop mobile application for data collection and transmission
- ✓ Develop a GIS data base

#### Trap & Bait Free Trapping





#### FAO Mission 2010

# Will trapping alone do ? The North African Experience

<image>

 Trap captures increased from 10 weevils / trap / month during May ,2009 to over 100 weevils / trap / month during February, 2010

#### Morocco



Trap captures within 2-5 weevils / trap / month (2009-10) Morocco

Maps : http://www.lonleyplanet.com

Chemical Control

Preventive Chemical Treatments



#### Low Pressure High Volume Sprays



Targeted Preventive Sprays -After Offshoot & Frond Removal

- Plantations
- ✓ Nurseries
- ✓ Ornamental/Avenue Palms

### **Curative treatment of RPW infested palms**





#### Mechanical Sanitation

#### Palm Injectors ?



Insecticide Residues Due to Both Preventive & Curative Chemical Treatments

#### **Removal of Severely Infested Palms**



#### Removal

#### Shred / pulverize



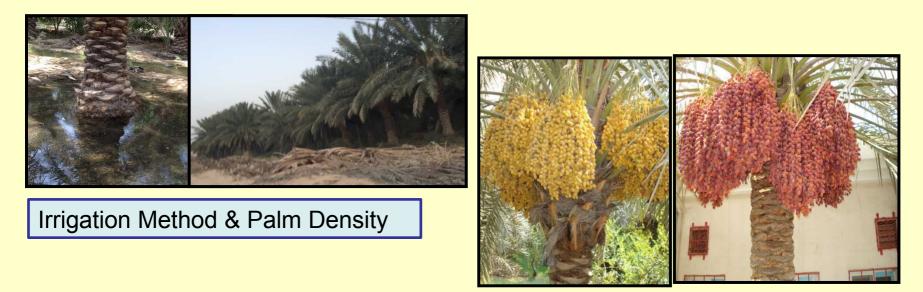


#### Lessons From the Canary Island

- ✓ Remove/Eradicate Within 24h of Detection
- ✓ Follow Strict Quarantine Protocols
- Adopt Phytosanitory Treatments

#### Burn ??

**Current Protocol is Costly and Not Sustainable** 


#### Agronomic Practices Influence RPW Attack

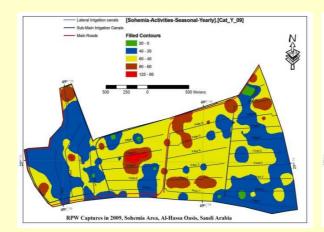


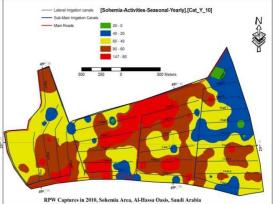
Poor Field Sanitation



Frond and Offshoot Management




Host Plant Resistance Not Exploited : Does RNAi Hold the Key?


#### Periodic Monitoring & Evaluation of the RPW-IPM Strategy

Canary Island RPW Control Program : Effective use of Mobile Applications /GIS for Instant Communication [Data Collection, Transmission, Interpretation & Decision Making]



Photo by : Moisés Fajardo Bello Coordinador GMR Canarias Al-Suhemia, Saudi Arabia 2009 / 2010





# **What About Biological Control**



| Potential Biocontrol Agents                            | Scientific Name                                                                                                                                   |  |  |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Insects (Wasp, Earwig)                                 | Scolia erratica, Sarcophaga fuscicauda, Chelisoches moris                                                                                         |  |  |
| Bacteria                                               | Pseudomonas aeruginosa, Bacillus sp., Serratia sp. B.<br>sphaericus, B. mgaterium,<br>B. laterosporus, and B. thuringinsis,                       |  |  |
| Fungus                                                 | Beauveria bassiana, Metarhizium anisoplieae                                                                                                       |  |  |
| Virus                                                  | Cytoplasmic Polyhedrosis Virus (CPV),                                                                                                             |  |  |
| Yeast                                                  |                                                                                                                                                   |  |  |
| Entomo-Pathogenic<br>Nematodes (EPN)                   | Heterorbhabditis spp., Steinernema abbasi,<br>Heterorbhabditis indicus, Teratorhabditis palmarum,<br>Steinerema sp., H. indica, and Rhabditis sp. |  |  |
| Birds (Indian tree pie bird<br>and Crow pheasant bird) | Dendrocitta vagabunda parvula                                                                                                                     |  |  |

Under field conditions, imidacloprid and *S. carpocapsae*, either alone or in combination were not significantly different from each other, with efficacies ranging from 73 to 95 % (Dembilio et al., 2010). *Beauveria bassiana* solid formulation with high RPW pathogenicity and persistence, could be applied as a preventive as well as curative treatment for RPW control (Gűerri-Agulló et al., 2011).

Over all improvement in the IPM Strategy:

- $\checkmark\,$  Providing financial and human resources
- ✓ Better understanding of the behavior (Bio-ecology) of RPW
- Early detection of infested palms
- ✓ Deliver and sustain biological control agents in the field
- ✓ Test ,develop and deploy service-less trapping options
- ✓ Develop phytosanitary protocols and implement quarantine laws
- User friendly mobile applications for GIS assisted data management and decision making
- ✓ Focus on applied research
- ✓ Facilitate farmer participation in the control program
- Involve all stakeholders including the private sector, universities and research institutions, professional associations including producers' organizations
- ✓ Build capacities and strengthen the extension network
- Experience sharing through local, regional and international cooperation



Yes There Is

✓ Eradication of RPW in the Canary Islands, Spain (May 2016)

✓ Control of RPW in Mauritania



# THANK YOU

#### Acknowledgements

- ✓ Food and Agriculture Organization of the UN
- ✓ Ministry of Environment, Water and Agriculture, Kingdom of Saudi Arabia
- ✓ King Faisal University, Kingdom of Saudi Arabia
- ✓ Indian Council of Agricultural Research